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Definitions

Definition 1 (Markov Chain)
S : state-space(countable set), θ : stochastic variable,
{θ(t) ∈ S|t = 0, 1, ...} : discrete time stochastic processes
If {θ(t)}t satisfies

P(θ(t+1) ∈ A|θ(0) = x0, ..., θ(t) = x) = P(θ(t+1) ∈ A|θ(t) = x)

∀x , xt−1, ..., x0 ∈ S, A ⊂ S, t = 0, 1, ...

then, {θ(t)}t is said to be Markov Chain.

The future states only depend on present states, not on the past
states.

Irie Kaichi (the Faculty of Economics, Kyoto University) Basic concepts and definitions of Markov Chain Definitions



Short Pres. Title 4/14 Short Presentation Details

frame title

Definition 2 (time-homogeneous)

if {θ(t)}t satisfies

P(θ(t+1) ∈ A|θ(t) = x) = P(θ(t+1) ∈ A|θ(t) = x) := P(x |A),

∀x , xt−1, ..., x0 ∈ S, A ⊂ S, t = 0, 1, ...
Then, Markov Chain is said to be time-homogeneous.

States transition probabilities are independent from time, t.
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Stochastic matrix

Definition 3
Define P(x , y) as below.

P(x , y) := P(θ(t+1) = y |θ(t) = x)

Then, stochastic matrix P is defined as below.

P :=

P(x1, x1) · · · P(x1, xr )
...

. . .
...

P(xr , x1) · · · P(xr , xr )


More generally, A real r ∗ r matrix P is said to be stochastic matrix if and only if its elements
are all non-negative and its rows sums to 1.
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Examples

An example of a naive Markov Chain.

Let’s look at the situation shown on the right.

P(θ(t+1) = 1|θ(t) = 1) = 0.6

P(θ(t+1) = 1|θ(t) = 2) = 0.2

P(θ(t+1) = 2|θ(t) = 1) = 0.4
...

Each probability is independent from t.
The transition matrix P is below.

P :=

0.6 0.4 0
0.2 0.3 0.5
0 0 1


Figure 1:
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Lemmas

Lemma 4

The product of two stochastic matrices is another stochastic matrix.

Proof.
let P = (pij)ij , Q = (qij)ij be stochastic matrices. From definition of matrix product,
(PQ)ij =

∑
k pikqkj . Also, stochastic matrices satisfies ∀i ∈ N,

∑
j pij = 1,

∑
j qij = 1

∴
∑

j
(PQ)ij =

∑
j

∑
k

pikqkj =
∑

k

(
pik
∑

j
qkj

)
=
∑

k
pik = 1

Therefore, sum of ith row of PQ equals to 1, thus PQ is another stochastic matrix.
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Lemma 5

Every eigenvalue λ satisfies |λ| ≤ 1.

Proof.
Let P = (pij)ij be stochastic matrices, v = (vi)i be eigenvector of P, and λ be eigenvalue.
Also, define m as below.

m =i {|v1|, ..., |vn|}

Then, because Pv = λv , ∑
i

pmivi = λvm

∴ |λ| = |
∑

i
pmi vi |

|vm| ≤
∑

i
pmi |vi |

|vm| ≤
∑

i
pmi |vm|
|vm| = 1·|vm|

|vm| = 1
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Lemma 6

Every stochastic matrix has at least one eigenvalue equal to 1.

Proof.
Let P = (pij)ij be a stochastic matrix, v0 be a vector s.t.v0 = (1, · · · , 1), then

∀i , (Pv0)i =
∑

j
pij = 1 = (v0)i ∴ Pv0 = v0

Thus, P has at least one eigenvalue equal to 1.
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What we will learn next

1 Discrete State-space -> Continuous state-space
1 ex) Processes with Gaussian Noise like AR(1):

Zt+1 = αZt + εt , t = 0, 1, ..., ε ∼ N(0, σ2)

2 Dicrete time -> Continuous time
1 ex) Random Walk -> Brownian Motion

I will introduce further theories at next b-seminar!
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Thank You!
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