["Stochastic Modelling for System Biology" Chapter 5]

Irie Kaichi

the Faculty of Economics, Kyoto University

[B seminar](Jan.20, 2023)

イロト イロト イヨト イヨト

1

200

Table of Contents

Basic concepts and definitions of Markov Chain

- Definitions
- Examples
- Lemmas

2 Introduction to further theory of Markov processes

3 Summing Up

・ロト ・日・・日・・日・ つへぐ

Irie Kaichi (the Faculty of Economics, Kyoto University)

Definitions

Definition 1 (Markov Chain)

S: state-space(countable set), θ : stochastic variable, $\{\theta^{(t)} \in S | t = 0, 1, \ldots\}$: discrete time stochastic processes If $\{\theta^{(t)}\}_t$ satisfies

$$P(\theta^{(t+1)} \in A | \theta^{(0)} = x_0, ..., \theta^{(t)} = x) = P(\theta^{(t+1)} \in A | \theta^{(t)} = x)$$

$$\forall x, x_{t-1}, ..., x_0 \in S, A \subset S, t = 0, 1, ...$$

then, $\{\theta^{(t)}\}_t$ is said to be **Markov Chain**.

The future states only depend on present states, not on the past states.

Irie Kaichi (the Faculty of Economics, Kyoto University)

3

ヘロト 人間 ト 人 思 ト 人 思 トー

frame title

Definition 2 (time-homogeneous) if $\{\theta^{(t)}\}_t$ satisfies $P(\theta^{(t+1)} \in A | \theta^{(t)} = x) = P(\theta^{(t+1)} \in A | \theta^{(t)} = x) := P(x|A),$ $\forall x, x_{t-1}, ..., x_0 \in S, A \subset S, t = 0, 1, ...$ Then, Markov Chain is said to be **time-homogeneous**.

States transition probabilities are independent from time, t.

イロト 不同 トイヨト イヨト

Stochastic matrix

Definition 3

Define P(x, y) as below.

$$P(x,y) := P(\theta^{(t+1)} = y | \theta^{(t)} = x)$$

Then, stochastic matrix *P* is defined as below.

$$P := \begin{pmatrix} P(x_1, x_1) & \cdots & P(x_1, x_r) \\ \vdots & \ddots & \vdots \\ P(x_r, x_1) & \cdots & P(x_r, x_r) \end{pmatrix}$$

More generally, A real r * r matrix P is said to be **stochastic matrix** if and only if its elements are all non-negative and its rows sums to 1.

3

イロト 不同 ト 不同 ト 不同 ト

Examples

An example of a naive Markov Chain.

Let's look at the situation shown on the right.

$$P(\theta^{(t+1)} = 1 | \theta^{(t)} = 1) = 0.6$$
$$P(\theta^{(t+1)} = 1 | \theta^{(t)} = 2) = 0.2$$
$$P(\theta^{(t+1)} = 2 | \theta^{(t)} = 1) = 0.4$$

Each probability is independent from t. The transition matrix P is below.

$$P := \begin{pmatrix} 0.6 & 0.4 & 0 \\ 0.2 & 0.3 & 0.5 \\ 0 & 0 & 1 \end{pmatrix}$$

Irie Kaichi (the Faculty of Economics, Kyoto University)

Lemmas

Lemma 4

The product of two stochastic matrices is another stochastic matrix.

Proof.

let $P = (p_{ij})_{ij}$, $Q = (q_{ij})_{ij}$ be stochastic matrices. From definition of matrix product, $(PQ)_{ij} = \sum_k p_{ik}q_{kj}$. Also, stochastic matrices satisfies $\forall i \in \mathbb{N}$, $\sum_j p_{ij} = 1$, $\sum_j q_{ij} = 1$

$$\therefore \sum_{j} (PQ)_{ij} = \sum_{j} \sum_{k} p_{ik} q_{kj} = \sum_{k} \left(p_{ik} \sum_{j} q_{kj} \right) = \sum_{k} p_{ik} = 1$$

Therefore, sum of *i*th row of PQ equals to 1, thus PQ is another stochastic matrix.

イロト 不同 トイヨト イヨト

Lemma 5

Every eigenvalue λ satisfies $|\lambda| \leq 1$.

Proof.

Let $P = (p_{ij})_{ij}$ be stochastic matrices, $v = (v_i)_i$ be eigenvector of P, and λ be eigenvalue. Also, define m as below.

$$m =_i \{|v_1|, ..., |v_n|\}$$

Then, because $Pv = \lambda v$,

$$\sum_{i} p_{mi} v_i = \lambda v_m$$

 $\therefore |\lambda| = rac{|\sum_{i} p_{mi} v_i|}{|v_m|} \le rac{\sum_{i} p_{mi} |v_i|}{|v_m|} \le rac{\sum_{i} p_{mi} |v_m|}{|v_m|} = rac{1 \cdot |v_m|}{|v_m|} = 1$

3

イロト イヨト イヨト

Lemma 6

Every stochastic matrix has at least one eigenvalue equal to 1.

Proof.

Let $P = (p_{ij})_{ij}$ be a stochastic matrix, v_0 be a vector s.t. $v_0 = (1, \cdots, 1)$, then

$$orall i, (Pv_0)_i = \sum_j p_{ij} = 1 = (v_0)_i \therefore Pv_0 = v_0$$

Thus, P has at least one eigenvalue equal to 1.

3

イロト イヨト イヨト イヨト

Table of Contents

Basic concepts and definitions of Markov Chain

- Definitions
- Examples
- Lemmas

2 Introduction to further theory of Markov processes

3 Summing Up

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Irie Kaichi (the Faculty of Economics, Kyoto University)

イロト 不同 トイヨト イヨト

= nar

What we will learn next

Discrete State-space -> Continuous state-space

• ex) Processes with Gaussian Noise like AR(1):

$$Z_{t+1} = \alpha Z_t + \varepsilon_t, \quad t = 0, 1, ..., \quad \varepsilon \sim N(0, \sigma^2)$$

Oicrete time -> **Continuous** time

• ex) Random Walk -> Brownian Motion

I will introduce further theories at next b-seminar!

Table of Contents

Basic concepts and definitions of Markov Chain

- Definitions
- Examples
- Lemmas

2 Introduction to further theory of Markov processes

3 Summing Up

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Thank You!

References I

[Wil19] Darren J. Wilkinson. Stochastic Modelling for Systems Biology, Third Edition. Chapman Hall, 2019. ISBN: 9780367656935. URL: https://www.routledge.com/Stochastic-Modelling-for-Systems-Biology-Third-Edition/Wilkinson/p/book/9780367656935.